当前位置: 首 页 - 科学研究 - 学术报告 - 正文

澳门太阳集团888、所2019年系列学术报告(第14场):张龙博士 青岛大学

发表于: 2019-01-14   点击: 

报告地点:数学楼617

报告时间:2019115 下午16:00-17:00

报告人: 青岛大学张龙博士

报告题目:On the tame kernels of imaginary cyclic quartic fields with class number one

报告摘要:A general architecture has been established for the computation $K_2\mathcal{O}_F,$ the tame kernel of $F$ for imaginary cyclic quartic field $F=\mathbb{Q}\Big(\sqrt{-(D+B\sqrt{D})}\Big)$ with class number one, in particular with large discriminants. As a result, it is prove that $K_2\mathcal{O}_F$ is trivial in the following three cases: $B=1,D=2$ or $B=2, D=13$ or $B=2, D=29$. In the last case, the discriminant of $F$ is 24389. Hence, it can be claimed that the architecture also works for the computation of the tame kernel of a number field with discriminant less than 25000.

报告人简介:张龙,博士。青岛大学讲师,现任青岛大学数学科学学院教师。